33 research outputs found

    ANN and Fuzzy c-Means applied to environmental pollution prediction

    Get PDF
    Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours

    Prediction of PM10 concentrations using Fuzzy c-Means and ANN

    Get PDF
    Salamanca has been considered among the most polluted cities in Mexico. The vehicular park, the industry and the emissions produced by agriculture, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Particulate Matter less than 10 μg/m3 in diameter (PM10). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and air pollutant concentrations of PM10. Before the prediction, Fuzzy c-Means clustering algorithm have been implemented in order to find relationship among pollutant and meteorological variables. These relationship help us to get additional information that will be used for predicting. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of PM10 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results shown that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hour

    Forecasting SO2 Air Pollution in Salamanca, Mexico using an ADALINE

    Get PDF
    A comparison between a linear regression model and a Non-linear regressionmodel is presented in this work for forecasting of pollution levels due to SO2 in Salamanca city, Gto. Prediction is performed by means of an Adaptive Linear Neural Network (ADALINE) and a Generalized Regression NeuralNetwork (GRNN). Prediction experiments are realized for 1, 12 and 24 hours in advance, and the results for linear regression have been satisfactory. The performance estimation of both models are determined using the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Obtained results are compared. The final results indicated that ADALINE outperforms the past approach using GRNN

    Design Of the Approximation Function of a Pedometer based on Artificial Neural Network for the Healthy Life Style Promotion in Diabetic Patients

    Get PDF
    The present study describes the design of an Artificial Neural Network to synthesize the Approximation Function of a Pedometer for the Healthy Life Style Promotion. Experimentally, the approximation function is synthesized using three basic digital pedometers of low cost, these pedometers were calibrated with an advanced pedometer that calculates calories consumed and computes distance travelled with personal stride input. The synthesized approximation function by means of the designed neural network will allow to reply the calibration experiment for multiple patients with Diabetes Mellitus in Healthy Life Style promotion programs. Artificial Neural Networks have been developed for a wide variety of computational problems in cognition, pattern recognition, and decision making. The Healthy Life Style refer to adequate nutrient ingest, physical activity, time to rest, stress control, and a high self-esteem. The pedometer is a technological device that helps to control the physical activity in the diabetic patient. A brief description of the Artificial Neural Network designed to synthesize the Approximation Function, the obtained Artificial Neural Network structure and results in the Approximation Function synthesis for three patients are presented. The advantages and disadvantages of the method are discussed and our conclusions are presented

    Detection of pore space in CT soil images using artificial neural networks

    Get PDF
    Computed Tomography (CT) images provide a non-invasive alternative for observing soil structures, particularly pore space. Pore space in soil data indicates empty or free space in the sense that no material is present there except fluids such as air, water, and gas. Fluid transport depends on where pore spaces are located in the soil, and for this reason, it is important to identify pore zones. The low contrast between soil and pore space in CT images presents a problem with respect to pore quantification. In this paper, we present a methodology that integrates image processing, clustering techniques and artificial neural networks, in order to classify pore space in soil images. Image processing was used for the feature extraction of images. Three clustering algorithms were implemented (K-means, Fuzzy C-means, and Self Organising Maps) to segment images. The objective of clustering process is to find pixel groups of a similar grey level intensity and to organise them into more or less homogeneous groups. The segmented images are used for test a classifier. An Artificial Neural Network is characterised by a great degree of modularity and flexibility, and it is very efficient for large-scale and generic pattern recognition applications. For these reasons, an Artificial Neural Network was used to classify soil images into two classes (pore space and solid soil). Our methodology shows an alternative way to detect solid soil and pore space in CT images. The percentages of correct classifications of pore space of the total number of classifications among the tested images were 97.01%, 96.47% and 96.12%

    Microcalcification Detection Applying Artificial Neural Networks and Mathematical Morphology in Digital Mammograms

    Get PDF
    Breast cancer is one of the leading causes to women mortality in the world and early detection is an important means to reduce the mortality rate. The presence of microcalcifications clusters has been considered as a very important indicator of malignant types of breast cancer and its detection is important to prevent and treat the disease. This paper presents an alternative and effective approach in order to detect microcalcifications clusters in digitized mammograms based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. A k-means algorithm is used to cluster the data based on the features vectors and finally an artificial neural network-based classifier is applied and the classification performance is evaluated by a ROC curve. Experimental results indicate that the percentage of correct classification was 99.72%, obtaining 100% true positive (sensitivity) and 99.67% false positive (specificity), with the best classifier proposed. In case of the best classifier, we obtained a performance evaluation of classification of Az = 0.987

    Air pollution data classification by SOM Neural Network

    Get PDF
    Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables

    Image sub-segmentation by PFCM and Artificial Neural Networks to detect pore space in 2D and 3D CT soil images

    Get PDF
    The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively

    Unsupervised method to classify PM10 pollutant concentrations

    Get PDF
    In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction

    Pollutant concentrations and Meteorological data classification by Neural Networks

    Get PDF
    This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved
    corecore